
Solutions

6

 Chapter 6 Solutions S-3

6.1 Th ere is no single right answer for this question. Th e purpose is to get students
to think about parallelism present in their daily lives. Th e answer should have at
least 10 activities identifi ed.

6.1.1 Any reasonable answer is correct here.

6.1.2 Any reasonable answer is correct here.

6.1.3 Any reasonable answer is correct here.

6.1.4 Th e student is asked to quantify the savings due to parallelism. Th e answer
should consider the amount of overlap provided through parallelism and should be
less than or equal to (if no parallelism was possible) to the original time computed
if each activity was carried out serially.

6.2

6.2.1 For this set of resources, we can pipeline the preparation. We assume that
we do not have to reheat the oven for each cake.

Preheat Oven

Mix ingredients in bowl for Cake 1

Fill cake pan with contents of bowl and bake Cake 1. Mix ingredients for
Cake 2 in bowl.

Finish baking Cake 1. Empty cake pan. Fill cake pan with bowl contents for
Cake 2 and bake Cake 2. Mix ingredients in bowl for Cake 3.

Finish baking Cake 2. Empty cake pan. Fill cake pan with bowl contents for
Cake 3 and bake Cake 3.

Finish baking Cake 3. Empty cake pan.

6.2.2 Now we have 3 bowls, 3 cake pans and 3 mixers. We will name them A, B,
and C.

Preheat Oven

Mix incredients in bowl A for Cake 1

Fill cake pan A with contents of bowl A and bake for Cake 1. Mix ingredients
for

Cake 2 in bowl A.

Finish baking Cake 1. Empty cake pan A. Fill cake pan A with contents of
bowl A for Cake 2. Mix ingredients in bowl A for Cake 3.

Finishing baking Cake 2. Empty cake pan A. Fill cake pan A with contents
of bowl A for Cake 3.

S-4 Chapter 6 Solutions

Finish baking Cake 3. Empty cake pan A.

Th e point here is that we cannot carry out any of these items in parallel
because we either have one person doing the work, or we have limited
capacity in our oven.

6.2.3 Each step can be done in parallel for each cake. Th e time to bake 1 cake, 2
cakes or 3 cakes is exactly the same.

6.2.4 Th e loop computation is equivalent to the steps involved to make one cake.
Given that we have multiple processors (or ovens and cooks), we can execute
instructions (or cook multiple cakes) in parallel. Th e instructions in the loop (or
cooking steps) may have some dependencies on prior instructions (or cooking
steps) in the loop body (cooking a single cake).

Data-level parallelism occurs when loop iterations are independent (i.e., no
loop carried dependencies).

Task-level parallelism includes any instructions that can be computed on
parallel execution units, are similar to the independent operations involved
in making multiple cakes.

6.3

6.3.1 While binary search has very good serial performance, it is diffi cult to
parallelize without modifying the code. So part A asks to compute the speedup
factor, but increasing X beyond 2 or 3 should have no benefi ts. While we can
perform the comparison of low and high on one core, the computation for mid
on a second core, and the comparison for A[mid] on a third core, without some
restructuring or speculative execution, we will not obtain any speedup. Th e answer
should include a graph, showing that no speedup is obtained aft er the values of 1,
2, or 3 (this value depends somewhat on the assumption made) for Y.

6.3.2 In this question, we suggest that we can increase the number of cores (to
each the number of array elements). Again, given the current code, we really cannot
obtain any benefi t from these extra cores. But if we create threads to compare the
N elements to the value X and perform these in parallel, then we can get ideal
speedup (Y times speedup), and the comparison can be completed in the amount
of time to perform a single comparison.

6.4. Th is problem illustrates that some computations can be done in parallel
if serial code is restructured. But more importantly, we may want to provide for
SIMD operations in our ISA, and allow for data-level parallelism when performing
the same operation on multiple data items.

 Chapter 6 Solutions S-5

6.4.1 Th is is a straightforward computation. Th e fi rst instruction is executed
once, and the loop body is executed 998 times.

Version 1—17,965 cycles

Version 2—22,955 cycles

Version 3—20,959 cycles

6.4.2 Array elements D[j] and D[j�1] will have loop carried dependencies. Th ese
will $f4 in the current iteration and $f0 in the next iteration.

6.4.3 Th is is a very challenging problem and there are many possible
implementations for the solution. Th e preferred solution will try to utilize the two
nodes by unrolling the loop 4 times (this already gives you a substantial speedup
by eliminating many loop increment, branch and load instructions). Th e loop
body running on node 1 would look something like this (the code is not the most
effi cient code sequence):

addiu $s1, $zero, 996
l.d $f0, –16($s0)
l.d $f2, –8($s0)
loop:
add.d $f4, $f2, $f0
add.d $f6, $f4, $f2
Send (2, $f4)
Send (2, $f6)
s.d $f4, 0($s0)
s.d $f6, 8($s0)
Receive($f8)
add.d $f10, $f8, $f6
add.d $f0, $f10, $f8
Send (2, $f10)
Send (2, $f0)
s.d. $f8, 16($s0)
s.d $f10, 24($s0)
s.d $f0 32($s0)
Receive($f2)
s.d $f2 40($s0)
addiu $s0, $s0, 48
bne $s0, $s1, loop
add.d $f4, $f2, $f0
add.d $f6, $f4, $f2
add.d $f10, $f8, $f6
s.d $f4, 0($s0)
s.d $f6, 8($s0)
s.d $f8, 16($s0)

S-6 Chapter 6 Solutions

Th e code on node 2 would look something like this:

addiu $s2, $zero, 0
loop:

Receive ($f12)
Receive ($f14)
add.d $f16, $f14, $f12
Send(1, $f16)
Receive ($f12)
Receive ($f14)
add.d $f16, $f14, $f12
Send(1, $f16)
Receive ($f12)
Receive ($f14)
add.d $f16, $f14, $f12
Send(1, $f16)
Receive ($f12)
Receive ($f14)
add.d $f16, $f14, $f12
Send(1, $f16)
addiu $s2, $s2, 1
bne $s2, 83, loop

Basically Node 1 would compute 4 adds each loop iteration, and Node 2
would compute 4 adds. Th e loop takes 1463 cycles, which is much better than
close to 18K. But the unrolled loop would run faster given the current send
instruction latency.

6.4.4 Th e loop network would need to respond within a single cycle to obtain a
speedup. Th is illustrates why using distributed message passing is diffi cult when
loops contain loop-carried dependencies.

6.5

6.5.1 Th is problem is again a divide and conquer problem, but utilizes recursion
to produce a very compact piece of code. In part A the student is asked to compute
the speedup when the number of cores is small. When forming the lists, we spawn a
thread for the computation of left in the MergeSort code, and spawn a thread for the
computation of the right. If we consider this recursively, for m initial elements in the
array, we can utilize 1 � 2 � 4 � 8 � 16 � …. log2 (m) processors to obtain speedup.

6.5.2 In this question, log2 (m) is the largest value of Y for which we can obtain
any speedup without restructuring. But if we had m cores, we could perform sorting
using a very diff erent algorithm. For instance, if we have greater than m/2 cores,
we can compare all pairs of data elements, swap the elements if the left element
is greater than the right element, and then repeat this step m times. So this is one
possible answer for the question. It is known as parallel comparison sort. Various
comparison sort algorithms include odd-even sort and cocktail sort.

 Chapter 6 Solutions S-7

6.6

6.6.1 Th is problem presents an “embarrassingly parallel” computation
and asks the student to fi nd the speedup obtained on a 4-core system. Th e
computations involved are: (m � p � n) multiplications and (m � p �
(n � 1)) additions. Th e multiplications and additions associated with a single
element in C are dependent (we cannot start summing up the results of the
multiplications for an element until two products are available). So in this question,
the speedup should be very close to 4.

6.6.2 Th is question asks about how speedup is aff ected due to cache misses caused
by the 4 cores all working on diff erent matrix elements that map to the same cache
line. Each update would incur the cost of a cache miss, and so will reduce the
speedup obtained by a factor of 3 times the cost of servicing a cache miss.

6.6.3 In this question, we are asked how to fi x this problem. Th e easiest way to
solve the false sharing problem is to compute the elements in C by traversing the
matrix across columns instead of rows (i.e., using index-j instead of index-i). Th ese
elements will be mapped to diff erent cache lines. Th en we just need to make sure
we process the matrix index that is computed (i, j) and (i � 1, j) on the same core.
Th is will eliminate false sharing.

6.7

6.7.1 x � 2, y � 2, w � 1, z � 0

x � 2, y � 2, w � 3, z � 0

x � 2, y � 2, w � 5, z � 0

x � 2, y � 2, w � 1, z � 2

x � 2, y � 2, w � 3, z � 2

x � 2, y � 2, w � 5, z � 2

x � 2, y � 2, w � 1, z � 4

x � 2, y � 2, w � 3, z � 4

x � 3, y � 2, w � 5, z � 4

6.7.2 We could set synchronization instructions aft er each operation so that all
cores see the same value on all nodes.

6.8

6.8.1 If every philosopher simultaneously picks up the left fork, then there will be
no right fork to pick up. Th is will lead to starvation.

S-8 Chapter 6 Solutions

6.8.2 Th e basic solution is that whenever a philosopher wants to eat, she checks
both forks. If they are free, then she eats. Otherwise, she waits until a neighbor
contacts her. Whenever a philosopher fi nishes eating, she checks to see if her
neighbors want to eat and are waiting. If so, then she releases the fork to one of
them and lets them eat. Th e diffi culty is to fi rst be able to obtain both forks without
another philosopher interrupting the transition between checking and acquisition.
We can implement this a number of ways, but a simple way is to accept requests
for forks in a centralized queue, and give out forks based on the priority defi ned
by being closest to the head of the queue. Th is provides both deadlock prevention
and fairness.

6.8.3 Th ere are a number or right answers here, but basically showing a case
where the request of the head of the queue does not have the closest forks available,
though there are forks available for other philosophers.

6.8.4 By periodically repeating the request, the request will move to the head of
the queue. Th is only partially solves the problem unless you can guarantee that
all philosophers eat for exactly the same amount of time, and can use this time to
schedule the issuance of the repeated request.

6.9

6.9.1
Core 1 Core 2

A3 B1, B4

A1, A2 B1, B4

A1, A4 B2

A1 B3

6.9.2
FU1 FU2

A1 A2

A1

A1

B1 B2

B1

A3

A4

B2

B4

 Chapter 6 Solutions S-9

6.9.3
FU1 FU2

A1 B1

A1 B1

A1 B2

A2 B3

A3 B4

A4

6.10 Th is is an open-ended question.

6.11

6.11.1 Th e answer should include a MIPS program that includes 4 diff erent
processes that will compute ¼ of the sums. Assuming that memory latency is not
an issue, the program should get linear speed when run on the 4 processors (there
is no communication necessary between threads). If memory is being considered
in the answer, then the array blocking should consider preserving spatial locality so
that false sharing is not created.

6.11.2 Since this program is highly data parallel and there are no data
dependencies, a 8� speedup should be observed. In terms of instructions, the
SIMD machine should have fewer instructions (though this will depend upon the
SIMD extensions).

6.12 Th is is an open-ended question that could have many possible answers. Th e
key is that the student learns about MISD and compares it to an SIMD machine.

6.13 Th is is an open-ended question that could have many answers. Th e key is
that the students learn about warps.

6.14 Th is is an open-ended programming assignment. Th e code should be tested
for correctness.

6.15 Th is question will require the students to research on the Internet both the
AMD Fusion architecture and the Intel QuickPath technology. Th e key is that
students become aware of these technologies. Th e actual bandwidth and latency
values should be available right off the company websites, and will change as the
technology evolves.

6.16

6.16.1 For an n-cube of order N (2N nodes), the interconnection network can
sustain N�1 broken links and still guarantee that there is a path to all nodes in the
network.

6.16.2 Th e plot below shows the number of network links that can fail and still
guarantee that the network is not disconnected.

S-10 Chapter 6 Solutions

1

10

100

1000

10000

100000

Network order

N
um

be
r

of
 fa

ul
ty

 li
nk

s
n-cube

fully connected

4 8 162

6.17

6.17.1 Major diff erences between these suites include:
Whetstone—designed for fl oating point performance specifi cally
PARSEC—these workloads are focused on multithreaded programs

6.17.2 Only the PARSEC benchmarks should be impacted by sharing and
synchronization. Th is should not be a factor in Whetstone.

6.18

6.18.1 Any reasonable C program that performs the transformation should be
accepted.

6.18.2 Th e storage space should be equal to (R � R) times the size of a single
precision fl oating point number � (m + 1) times the size of the index, where R is
the number of non-zero elements and m is the number of rows. We will assume
each fl oating-point number is 4 bytes, and each index is a short unsigned integer
that is 2 bytes. For Matrix X this equals 111 bytes.

6.18.3 Th e answer should include results for both a brute-force and a computation
using the Yale Sparse Matrix Format.

6.18.4 Th ere are a number of more effi cient formats, but their impact should be
marginal for the small matrices used in this problem.

6.19

6.19.1 Th is question presents three diff erent CPU models to consider when
executing the following code:

if (X[i][j] > Y[i][j])
 count++;

 Chapter 6 Solutions S-11

6.19.2 Th ere are a number of acceptable answers here, but they should consider
the capabilities of each CPU and also its frequency. What follows is one possible
answer:

Since X and Y are FP numbers, we should utilize the vector processor (CPU C) to
issue 2 loads, 8 matrix elements in parallel from A and 8 matrix elements from B,
into a single vector register and then perform a vector subtract. We would then
issue 2 vector stores to put the result in memory.

Since the vector processor does not have comparison instructions, we would have
CPU A perform 2 parallel conditional jumps based on fl oating point registers. We
would increment two counts based on the conditional compare. Finally, we could
just add the two counts for the entire matrix. We would not need to use core B.

6.19.3 Th e point of the problem is to show that it is diffi cult to perform an operation
on individual vector elements when utilizing a vector processor. What might be a nice
instruction to add would be a vector comparison that would allow for us to compare
two vectors and produce a scalar value of the number of elements where one vector
was larger the other. Th is would reduce the computation to a single instruction for
the comparison of 8 FP number pairs, and then an integer computation for summing
up all of these values.

6.20 Th is question looks at the amount of queuing that is occurring in the system
given a maximum transaction processing rate, and the latency observed on average
by a transaction. Th e latency includes both the service time (which is computed by
the maximum rate) and the queue time.

6.20.1 So for a max transaction processing rate of 5000/sec, and we have 4 cores
contributing, we would see an average latency of .8 ms if there was no queuing
taking place. Th us, each core must have 1.25 transactions either executing or in
some amount of completion on average.

So the answers are:

Latency Max TP rate Avg. # requests per core

1 ms 5000/sec 1.25

2 ms 5000/sec 2.5

1 ms 10,000/sec 2.5

2 ms 10,000/sec 5

6.20.2 We should be able to double the maximum transaction rate by doubling
the number of cores.

6.20.3 Th e reason this does not happen is due to memory contention on the
shared memory system.

