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6.1 Th ere is no single right answer for this question. Th e purpose is to get students 
to think about parallelism present in their daily lives. Th e answer should have at 
least 10 activities identifi ed.

6.1.1 Any reasonable answer is correct here.

6.1.2 Any reasonable answer is correct here.

6.1.3 Any reasonable answer is correct here.

6.1.4 Th e student is asked to quantify the savings due to parallelism. Th e answer 
should consider the amount of overlap provided through parallelism and should be 
less than or equal to (if no parallelism was possible) to the original time computed 
if each activity was carried out serially.

6.2 

6.2.1 For this set of resources, we can pipeline the preparation. We assume that 
we do not have to reheat the oven for each cake.

Preheat Oven

Mix ingredients in bowl for Cake 1

Fill cake pan with contents of bowl and bake Cake 1. Mix ingredients for 
Cake 2 in bowl.

Finish baking Cake 1. Empty cake pan. Fill cake pan with bowl contents for 
Cake 2 and bake Cake 2. Mix ingredients in bowl for Cake 3.

Finish baking Cake 2. Empty cake pan. Fill cake pan with bowl contents for 
Cake 3 and bake Cake 3.

Finish baking Cake 3. Empty cake pan.

6.2.2 Now we have 3 bowls, 3 cake pans and 3 mixers. We will name them A, B, 
and C.

Preheat Oven

Mix incredients in bowl A for Cake 1

Fill cake pan A with contents of bowl A and bake for Cake 1. Mix ingredients 
for

Cake 2 in bowl A.

Finish baking Cake 1. Empty cake pan A. Fill cake pan A with contents of 
bowl A for Cake 2. Mix ingredients in bowl A for Cake 3.

Finishing baking Cake 2. Empty cake pan A. Fill cake pan A with contents 
of bowl A for Cake 3.
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Finish baking Cake 3. Empty cake pan A.

Th e point here is that we cannot carry out any of these items in parallel 
because we either have one person doing the work, or we have limited 
capacity in our oven.

6.2.3 Each step can be done in parallel for each cake. Th e time to bake 1 cake, 2 
cakes or 3 cakes is exactly the same.

6.2.4 Th e loop computation is equivalent to the steps involved to make one cake. 
Given that we have multiple processors (or ovens and cooks), we can execute 
instructions (or cook multiple cakes) in parallel. Th e instructions in the loop (or 
cooking steps) may have some dependencies on prior instructions (or cooking 
steps) in the loop body (cooking a single cake).

Data-level parallelism occurs when loop iterations are independent (i.e., no 
loop carried dependencies).

Task-level parallelism includes any instructions that can be computed on 
parallel execution units, are similar to the independent operations involved 
in making multiple cakes.

6.3 

6.3.1 While binary search has very good serial performance, it is diffi  cult to 
parallelize without modifying the code. So part A asks to compute the speedup 
factor, but increasing X beyond 2 or 3 should have no benefi ts. While we can 
perform the comparison of low and high on one core, the computation for mid 
on a second core, and the comparison for A[mid] on a third core, without some 
restructuring or speculative execution, we will not obtain any speedup. Th e answer 
should include a graph, showing that no speedup is obtained aft er the values of 1, 
2, or 3 (this value depends somewhat on the assumption made) for Y.

6.3.2 In this question, we suggest that we can increase the number of cores (to 
each the number of array elements). Again, given the current code, we really cannot 
obtain any benefi t from these extra cores. But if we create threads to compare the 
N elements to the value X and perform these in parallel, then we can get ideal 
speedup (Y times speedup), and the comparison can be completed in the amount 
of time to perform a single comparison.

6.4. Th is problem illustrates that some computations can be done in parallel 
if serial code is restructured. But more importantly, we may want to provide for 
SIMD operations in our ISA, and allow for data-level parallelism when performing 
the same operation on multiple data items.
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6.4.1 Th is is a straightforward computation. Th e fi rst instruction is executed 
once, and the loop body is executed 998 times.

Version 1—17,965 cycles

Version 2—22,955 cycles

Version 3—20,959 cycles

6.4.2 Array elements D[j] and D[j�1] will have loop carried dependencies. Th ese 
will $f4 in the current iteration and $f0 in the next iteration.

6.4.3 Th is is a very challenging problem and there are many possible 
implementations for the solution. Th e preferred solution will try to utilize the two 
nodes by unrolling the loop 4 times (this already gives you a substantial speedup 
by eliminating many loop increment, branch and load instructions). Th e loop 
body running on node 1 would look something like this (the code is not the most 
effi  cient code sequence):

addiu $s1, $zero, 996
l.d $f0, –16($s0)
l.d $f2, –8($s0)
loop:
add.d $f4, $f2, $f0
add.d $f6, $f4, $f2
Send (2, $f4)
Send (2, $f6)
s.d $f4, 0($s0)
s.d $f6, 8($s0)
Receive($f8)
add.d $f10, $f8, $f6
add.d $f0, $f10, $f8
Send (2, $f10)
Send (2, $f0)
s.d. $f8, 16($s0)
s.d $f10, 24($s0)
s.d $f0 32($s0)
Receive($f2)
s.d $f2 40($s0)
addiu $s0, $s0, 48
bne $s0, $s1, loop
add.d $f4, $f2, $f0
add.d $f6, $f4, $f2
add.d $f10, $f8, $f6
s.d $f4, 0($s0)
s.d $f6, 8($s0)
s.d $f8, 16($s0)
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Th e code on node 2 would look something like this:

addiu $s2, $zero, 0
loop:

Receive ($f12)
Receive ($f14)
add.d $f16, $f14, $f12
Send(1, $f16)
Receive ($f12)
Receive ($f14)
add.d $f16, $f14, $f12
Send(1, $f16)
Receive ($f12)
Receive ($f14)
add.d $f16, $f14, $f12
Send(1, $f16)
Receive ($f12)
Receive ($f14)
add.d $f16, $f14, $f12
Send(1, $f16)
addiu $s2, $s2, 1
bne $s2, 83, loop

Basically Node 1 would compute 4 adds each loop iteration, and Node 2 
would compute 4 adds. Th e loop takes 1463 cycles, which is much better than 
close to 18K. But the unrolled loop would run faster given the current send 
instruction latency.

6.4.4 Th e loop network would need to respond within a single cycle to obtain a 
speedup. Th is illustrates why using distributed message passing is diffi  cult when 
loops contain loop-carried dependencies.

6.5 

6.5.1 Th is problem is again a divide and conquer problem, but utilizes recursion 
to produce a very compact piece of code. In part A the student is asked to compute 
the speedup when the number of cores is small. When forming the lists, we spawn a 
thread for the computation of left  in the MergeSort code, and spawn a thread for the 
computation of the right. If we consider this recursively, for m initial elements in the 
array, we can utilize 1 � 2 � 4 � 8 � 16 � …. log2 (m) processors to obtain speedup.

6.5.2 In this question, log2 (m) is the largest value of Y for which we can obtain 
any speedup without restructuring. But if we had m cores, we could perform sorting 
using a very diff erent algorithm. For instance, if we have greater than m/2 cores, 
we can compare all pairs of data elements, swap the elements if the left  element 
is greater than the right element, and then repeat this step m times. So this is one 
possible answer for the question. It is known as parallel comparison sort. Various 
comparison sort algorithms include odd-even sort and cocktail sort.
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6.6 

6.6.1 Th is problem presents an “embarrassingly parallel” computation 
and asks the student to fi nd the speedup obtained on a 4-core system. Th e 
computations involved are: (m � p � n) multiplications and (m � p � 
(n � 1)) additions. Th e multiplications and additions associated with a single 
element in C are dependent (we cannot start summing up the results of the 
multiplications for an element until two products are available). So in this question, 
the speedup should be very close to 4.

6.6.2 Th is question asks about how speedup is aff ected due to cache misses caused 
by the 4 cores all working on diff erent matrix elements that map to the same cache 
line. Each update would incur the cost of a cache miss, and so will reduce the 
speedup obtained by a factor of 3 times the cost of servicing a cache miss.

6.6.3 In this question, we are asked how to fi x this problem. Th e easiest way to 
solve the false sharing problem is to compute the elements in C by traversing the 
matrix across columns instead of rows (i.e., using index-j instead of index-i). Th ese 
elements will be mapped to diff erent cache lines. Th en we just need to make sure 
we process the matrix index that is computed ( i, j) and (i � 1, j) on the same core. 
Th is will eliminate false sharing.

6.7 

6.7.1 x � 2, y � 2, w � 1, z � 0

x � 2, y � 2, w � 3, z � 0

x � 2, y � 2, w � 5, z � 0

x � 2, y � 2, w � 1, z � 2

x � 2, y � 2, w � 3, z � 2

x � 2, y � 2, w � 5, z � 2

x � 2, y � 2, w � 1, z � 4

x � 2, y � 2, w � 3, z � 4

x � 3, y � 2, w � 5, z � 4

6.7.2 We could set synchronization instructions aft er each operation so that all 
cores see the same value on all nodes.

6.8 

6.8.1 If every philosopher simultaneously picks up the left  fork, then there will be 
no right fork to pick up. Th is will lead to starvation.
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6.8.2 Th e basic solution is that whenever a philosopher wants to eat, she checks 
both forks. If they are free, then she eats. Otherwise, she waits until a neighbor 
contacts her. Whenever a philosopher fi nishes eating, she checks to see if her 
neighbors want to eat and are waiting. If so, then she releases the fork to one of 
them and lets them eat. Th e diffi  culty is to fi rst be able to obtain both forks without 
another philosopher interrupting the transition between checking and acquisition. 
We can implement this a number of ways, but a simple way is to accept requests 
for forks in a centralized queue, and give out forks based on the priority defi ned 
by being closest to the head of the queue. Th is provides both deadlock prevention 
and fairness.

6.8.3 Th ere are a number or right answers here, but basically showing a case 
where the request of the head of the queue does not have the closest forks available, 
though there are forks available for other philosophers.

6.8.4 By periodically repeating the request, the request will move to the head of 
the queue. Th is only partially solves the problem unless you can guarantee that 
all philosophers eat for exactly the same amount of time, and can use this time to 
schedule the issuance of the repeated request.

6.9 

6.9.1
Core 1 Core 2

A3 B1, B4

A1, A2 B1, B4

A1, A4 B2

A1 B3

6.9.2
FU1 FU2

A1 A2

A1

A1

B1 B2

B1

A3

A4

B2

B4
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6.9.3
FU1 FU2

A1 B1

A1 B1

A1 B2

A2 B3

A3 B4

A4

6.10 Th is is an open-ended question.

6.11 

6.11.1 Th e answer should include a MIPS program that includes 4 diff erent 
processes that will compute ¼ of the sums. Assuming that memory latency is not 
an issue, the program should get linear speed when run on the 4 processors (there 
is no communication necessary between threads). If memory is being considered 
in the answer, then the array blocking should consider preserving spatial locality so 
that false sharing is not created.

6.11.2 Since this program is highly data parallel and there are no data 
dependencies, a 8� speedup should be observed. In terms of instructions, the 
SIMD machine should have fewer instructions (though this will depend upon the 
SIMD extensions).

6.12 Th is is an open-ended question that could have many possible answers. Th e 
key is that the student learns about MISD and compares it to an SIMD machine.

6.13 Th is is an open-ended question that could have many answers. Th e key is 
that the students learn about warps.

6.14 Th is is an open-ended programming assignment. Th e code should be tested 
for correctness.

6.15 Th is question will require the students to research on the Internet both the 
AMD Fusion architecture and the Intel QuickPath technology. Th e key is that 
students become aware of these technologies. Th e actual bandwidth and latency 
values should be available right off  the company websites, and will change as the 
technology evolves.

6.16 

6.16.1 For an n-cube of order N (2N nodes), the interconnection network can 
sustain N�1 broken links and still guarantee that there is a path to all nodes in the 
network.

6.16.2 Th e plot below shows the number of network links that can fail and still 
guarantee that the network is not disconnected.
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6.17 

6.17.1 Major diff erences between these suites include:
Whetstone—designed for fl oating point performance specifi cally
PARSEC—these workloads are focused on multithreaded programs

6.17.2 Only the PARSEC benchmarks should be impacted by sharing and 
synchronization. Th is should not be a factor in Whetstone.

6.18 

6.18.1 Any reasonable C program that performs the transformation should be 
accepted.

6.18.2 Th e storage space should be equal to (R � R) times the size of a single 
precision fl oating point number � (m + 1) times the size of the index, where R is 
the number of non-zero elements and m is the number of rows. We will assume 
each fl oating-point number is 4 bytes, and each index is a short unsigned integer 
that is 2 bytes. For Matrix X this equals 111 bytes.

6.18.3 Th e answer should include results for both a brute-force and a computation 
using the Yale Sparse Matrix Format.

6.18.4 Th ere are a number of more effi  cient formats, but their impact should be 
marginal for the small matrices used in this problem.

6.19 

6.19.1 Th is question presents three diff erent CPU models to consider when 
executing the following code:

if (X[i][j] > Y[i][j])
    count++;
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6.19.2 Th ere are a number of acceptable answers here, but they should consider 
the capabilities of each CPU and also its frequency. What follows is one possible 
answer:

Since X and Y are FP numbers, we should utilize the vector processor (CPU C) to 
issue 2 loads, 8 matrix elements in parallel from A and 8 matrix elements from B, 
into a single vector register and then perform a vector subtract. We would then 
issue 2 vector stores to put the result in memory.

Since the vector processor does not have comparison instructions, we would have 
CPU A perform 2 parallel conditional jumps based on fl oating point registers. We 
would increment two counts based on the conditional compare. Finally, we could 
just add the two counts for the entire matrix. We would not need to use core B.

6.19.3 Th e point of the problem is to show that it is diffi  cult to perform an operation 
on individual vector elements when utilizing a vector processor. What might be a nice 
instruction to add would be a vector comparison that would allow for us to compare 
two vectors and produce a scalar value of the number of elements where one vector 
was larger the other. Th is would reduce the computation to a single instruction for 
the comparison of 8 FP number pairs, and then an integer computation for summing 
up all of these values.

6.20 Th is question looks at the amount of queuing that is occurring in the system 
given a maximum transaction processing rate, and the latency observed on average 
by a transaction. Th e latency includes both the service time (which is computed by 
the maximum rate) and the queue time.

6.20.1 So for a max transaction processing rate of 5000/sec, and we have 4 cores 
contributing, we would see an average latency of .8 ms if there was no queuing 
taking place. Th us, each core must have 1.25 transactions either executing or in 
some amount of completion on average.

So the answers are:

Latency Max TP rate Avg. # requests per core

1 ms 5000/sec 1.25

2 ms 5000/sec 2.5

1 ms 10,000/sec 2.5

2 ms 10,000/sec 5

6.20.2 We should be able to double the maximum transaction rate by doubling 
the number of cores.

6.20.3 Th e reason this does not happen is due to memory contention on the 
shared memory system.




