
Solutions

4



 Chapter 4 Solutions S-3

4.1 

4.1.1 Th e values of the signals are as follows:

RegWrite MemRead ALUMux MemWrite ALUop RegMux Branch

0 0 1 (Imm) 1 ADD X 0

ALUMux is the control signal that controls the Mux at the ALU input, 0 (Reg) 
selects the output of the register fi le, and 1 (Imm) selects the immediate 
from the instruction word as the second input to the ALU.

RegMux is the control signal that controls the Mux at the Data input to the 
register fi le, 0 (ALU) selects the output of the ALU, and 1 (Mem) selects the 
output of memory.

A value of X is a “don’t care” (does not matter if signal is 0 or 1)

4.1.2 All except branch Add unit and write port of the Registers

4.1.3 Outputs that are not used: Branch Add, write port of Registers

No outputs: None (all units produce outputs)

4.2 

4.2.1  Th is instruction uses instruction memory, both register read ports, the ALU 
to add Rd and Rs together, data memory, and write port in Registers.

4.2.2 None. Th is instruction can be implemented using existing blocks.

4.2.3  None. Th is instruction can be implemented without adding new control 
signals. It only requires changes in the Control logic.

4.3 

4.3.1  Clock cycle time is determined by the critical path, which for the given 
latencies happens to be to get the data value for the load instruction: I-Mem 
(read instruction), Regs (takes longer than Control), Mux (select ALU 
input), ALU, Data Memory, and Mux (select value from memory to be 
written into Registers). Th e latency of this path is 400 ps � 200 ps � 30 ps 
� 120 ps � 350 ps � 30 ps � 1130 ps. 1430 ps (1130 ps � 300 ps, ALU is 
on the critical path).

4.3.2  Th e speedup comes from changes in clock cycle time and changes to the 
number of clock cycles we need for the program: We need 5% fewer cycles 
for a program, but cycle time is 1430 instead of 1130, so we have a speedup 
of (1/0.95)*(1130/1430) � 0.83, which means we actually have a slowdown.
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4.3.3  Th e cost is always the total cost of all components (not just those on the 
critical path, so the original processor has a cost of I-Mem, Regs, Control, 
ALU, D-Mem, 2 Add units and 3 Mux units, for a total cost of 1000 � 200 
� 500 � 100 � 2000 � 2*30 � 3*10 � 3890.

We will compute cost relative to this baseline. Th e performance relative 
to this baseline is the speedup we previously computed, and our cost/
performance relative to the baseline is as follows:

New Cost: 3890 � 600 � 4490

Relative Cost: 4490/3890 � 1.15

Cost/Performance: 1.15/0.83 � 1.39. We are paying signifi cantly more for 
signifi cantly worse performance; the cost/performance is a lot worse than 
with the unmodifi ed processor.

4.4 

4.4.1  I-Mem takes longer than the Add unit, so the clock cycle time is equal to 
the latency of the I-Mem:

200 ps

4.4.2  Th e critical path for this instruction is through the instruction memory, 
Sign-extend and Shift -left -2 to get the off set, Add unit to compute the 
new PC, and Mux to select that value instead of PC�4. Note that the path 
through the other Add unit is shorter, because the latency of I-Mem is 
longer that the latency of the Add unit. We have:

200 ps � 15 ps � 10 ps � 70 ps � 20 ps � 315 ps

4.4.3  Conditional branches have the same long-latency path that computes the 
branch address as unconditional branches do. Additionally, they have a long-
latency path that goes through Registers, Mux, and ALU to compute the PCSrc 
condition. Th e critical path is the longer of the two, and the path through PCSrc 
is longer for these latencies:

200 ps � 90 ps � 20 ps � 90 ps � 20 ps � 420 ps

4.4.4 PC-relative branches.

4.4.5  PC-relative unconditional branch instructions. We saw in part c that this 
is not on the critical path of conditional branches, and it is only needed for 
PC-relative branches. Note that MIPS does not have actual unconditional 
branches (bne zero,zero,Label plays that role so there is no need for 
unconditional branch opcodes) so for MIPS the answer to this question is 
actually “None”.

4.4.6  Of the two instructions (BNE and ADD), BNE has a longer critical path so 
it determines the clock cycle time. Note that every path for ADD is shorter 
than or equal to the corresponding path for BNE, so changes in unit latency 
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will not aff ect this. As a result, we focus on how the unit’s latency aff ects the 
critical path of BNE.
Th is unit is not on the critical path, so the only way for this unit to become 
critical is to increase its latency until the path for address computation 
through sign extend, shift  left , and branch add becomes longer than the 
path for PCSrc through registers, Mux, and ALU. Th e latency of Regs, Mux, 
and ALU is 200 ps and the latency of Sign-extend, Shift -left -2, and Add is 
95 ps, so the latency of Shift -left -2 must be increased by 105 ps or more for 
it to aff ect clock cycle time.

4.5 

4.5.1 Th e data memory is used by LW and SW instructions, so the answer is:
25% � 10% � 35%

4.5.2  Th e sign-extend circuit is actually computing a result in every cycle, but its 
output is ignored for ADD and NOT instructions. Th e input of the sign-
extend circuit is needed for ADDI (to provide the immediate ALU operand), 
BEQ (to provide the PC-relative off set), and LW and SW (to provide the 
off set used in addressing memory) so the answer is:
20% � 25% � 25% � 10% � 80%

4.6 

4.6.1  To test for a stuck-at-0 fault on a wire, we need an instruction that puts that 
wire to a value of 1 and has a diff erent result if the value on the wire is stuck 
at zero:
If this signal is stuck at zero, an instruction that writes to an odd-numbered 
register will end up writing to the even-numbered register. So if we place 
a value of zero in R30 and a value of 1 in R31, and then execute ADD 
R31,R30,R30 the value of R31 is supposed to be zero. If bit 0 of the Write 
Register input to the Registers unit is stuck at zero, the value is written to 
R30 instead and R31 will be 1.

4.6.2  Th e test for stuck-at-zero requires an instruction that sets the signal to 1, 
and the test for stuck-at-1 requires an instruction that sets the signal to 0. 
Because the signal cannot be both 0 and 1 in the same cycle, we cannot test 
the same signal simultaneously for stuck-at-0 and stuck-at-1 using only one 
instruction. Th e test for stuck-at-1 is analogous to the stuck-at-0 test:

We can place a value of zero in R31 and a value of 1 in R30, then use ADD 
R30,R31,R31 which is supposed to place 0 in R30. If this signal is stuck-at-1, 
the write goes to R31 instead, so the value in R30 remains 1.

4.6.3 We need to rewrite the program to use only odd-numbered registers.

4.6.4  To test for this fault, we need an instruction whose MemRead is 1, so it has 
to be a load. Th e instruction also needs to have RegDst set to 0, which is 
the case for loads. Finally, the instruction needs to have a diff erent result if 
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MemRead is set to 0. For a load, MemRead�0 result in not reading memory, 
so the value placed in the register is “random” (whatever happened to be at 
the output of the memory unit). Unfortunately, this “random” value can be 
the same as the one already in the register, so this test is not conclusive.

4.6.5  To test for this fault, we need an instruction whose Jump is 1, so it has to be 
the jump instruction. However, for the jump instruction the RegDst signal is 
“don’t care” because it does not write to any registers, so the implementation 
may or may not allow us to set RegDst to 0 so we can test for this fault. As a 
result, we cannot reliably test for this fault.

4.7 

4.7.1
Sign-extend Jump’s shift-left-2

00000000000000000000000000010100 0001100010000000000001010000

4.7.2
ALUOp[1-0] Instruction[5-0]

00 010100

4.7.3
New PC Path

PC�4 PC to Add (PC�4) to branch Mux to jump Mux to PC

4.7.4
WrReg Mux ALU Mux Mem/ALU Mux Branch Mux Jump Mux

2 or 0 (RegDst is X) 20 X PC�4 PC�4

4.7.5
ALU Add (PC�4) Add (Branch)

-3 and 20 PC and 4 PC�4 and 20*4

4.7.6
Read Register 1 Read Register 2 Write Register Write Data RegWrite

4.8 

4.8.1
Pipelined Single-cycle

350 ps 1250 ps

4.8.2
Pipelined Single-cycle

1750 ps 1250 ps

4.8.3
Stage to split New clock cycle time

ID 300 ps



 Chapter 4 Solutions S-7

4.8.4
a. 35%

4.8.5
a. 65%

4.8.6  We already computed clock cycle times for pipelined and single cycle 
organizations, and the multi-cycle organization has the same clock cycle 
time as the pipelined organization. We will compute execution times 
relative to the pipelined organization. In single-cycle, every instruction 
takes one (long) clock cycle. In pipelined, a long-running program with 
no pipeline stalls completes one instruction in every cycle. Finally, a multi-
cycle organization completes a LW in 5 cycles, a SW in 4 cycles (no WB), an 
ALU instruction in 4 cycles (no MEM), and a BEQ in 4 cycles (no WB). So 
we have the speedup of pipeline

 

Multi-cycle execution time is X 
times pipelined execution time, 

where X is:
Single-cycle execution time is X times 
pipelined execution time, where X is:

a. 0.20*5�0.80*4�4.20 1250 ps/350 ps�3.57

4.9 

4.9.1
Instruction sequence Dependences

I1: OR R1,R2,R3 RAW on R1 from I1 to I2 and I3
I2: OR R2,R1,R4 RAW on R2 from I2 to I3
I3: OR R1,R1,R2 WAR on R2 from I1 to I2

WAR on R1 from I2 to I3

WAW on R1 from I1 to I3

4.9.2  In the basic fi ve-stage pipeline WAR and WAW dependences do not cause 
any hazards. Without forwarding, any RAW dependence between an 
instruction and the next two instructions (if register read happens in the 
second half of the clock cycle and the register write happens in the fi rst 
half). Th e code that eliminates these hazards by inserting NOP instructions 
is:

Instruction sequence  

OR R1,R2,R3

NOP Delay I2 to avoid RAW hazard on R1 from I1
NOP

OR R2,R1,R4

NOP Delay I3 to avoid RAW hazard on R2 from I2
NOP

OR R1,R1,R2
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4.9.3  With full forwarding, an ALU instruction can forward a value to EX stage 
of the next instruction without a hazard. However, a load cannot forward 
to the EX stage of the next instruction (by can to the instruction aft er that). 
Th e code that eliminates these hazards by inserting NOP instructions is:

Instruction sequence 

OR R1,R2,R3

OR R2,R1,R4 No RAW hazard on R1 from I1 (forwarded)
OR R1,R1,R2 No RAW hazard on R2 from I2 (forwarded)

4.9.4  Th e total execution time is the clock cycle time times the number of cycles. 
Without any stalls, a three-instruction sequence executes in 7 cycles (5 to 
complete the fi rst instruction, then one per instruction). Th e execution 
without forwarding must add a stall for every NOP we had in 4.9.2, and 
execution forwarding must add a stall cycle for every NOP we had in 4.9.3. 
Overall, we get:

No forwarding With forwarding Speedup due to forwarding

(7 � 4)*180 ps � 1980 ps 7*240 ps � 1680 ps 1.18

4.9.5  With ALU-ALU-only forwarding, an ALU instruction can forward to the 
next instruction, but not to the second-next instruction (because that would 
be forwarding from MEM to EX). A load cannot forward at all, because it 
determines the data value in MEM stage, when it is too late for ALU-ALU 
forwarding. We have:

Instruction sequence 

OR R1,R2,R3

OR R2,R1,R4 ALU-ALU forwarding of R1 from I1
OR R1,R1,R2 ALU-ALU forwarding of R2 from I2

4.9.6

No forwarding With ALU-ALU forwarding only
Speedup with ALU-ALU 

forwarding

(7 � 4)*180 ps � 1980 ps 7*210 ps � 1470 ps 1.35

4.10 

4.10.1  In the pipelined execution shown below, *** represents a stall when an 
instruction cannot be fetched because a load or store instruction is using 
the memory in that cycle. Cycles are represented from left  to right, and for 
each instruction we show the pipeline stage it is in during that cycle:

Instruction Pipeline Stage Cycles

SW R16,12(R6)
LW R16,8(R6)
BEQ R5,R4,Lbl
ADD R5,R1,R4
SLT R5,R15,R4

IF ID  EX  MEM WB 
   IF  ED  EX  MEM WB
       IF  ID  EX  MEM WB
           *** *** IF  ID  EX  MEM WB
                       IF  ID  EX  MEM WB

11
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We can not add NOPs to the code to eliminate this hazard – NOPs need to 
be fetched just like any other instructions, so this hazard must be addressed 
with a hardware hazard detection unit in the processor.

4.10.2  Th is change only saves one cycle in an entire execution without data 
hazards (such as the one given). Th is cycle is saved because the last 
instruction fi nishes one cycle earlier (one less stage to go through). If there 
were data hazards from loads to other instructions, the change would help 
eliminate some stall cycles.

Instructions Executed Cycles with 5 stages Cycles with 4 stages Speedup

5 4 � 5 � 9 3 � 5 � 8 9/8 � 1.13

4.10.3  Stall-on-branch delays the fetch of the next instruction until the branch 
is executed. When branches execute in the EXE stage, each branch causes 
two stall cycles. When branches execute in the ID stage, each branch only 
causes one stall cycle. Without branch stalls (e.g., with perfect branch 
prediction) there are no stalls, and the execution time is 4 plus the number 
of executed instructions. We have:

Instructions 
Executed

Branches 
Executed

Cycles with branch 
in EXE

Cycles with branch 
in ID Speedup

5 1 4 � 5 � 1*2 � 11 4 � 5 � 1*1 � 10 11/10 � 1.10

4.10.4  Th e number of cycles for the (normal) 5-stage and the (combined EX/
MEM) 4-stage pipeline is already computed in 4.10.2. Th e clock cycle 
time is equal to the latency of the longest-latency stage. Combining EX 
and MEM stages aff ects clock time only if the combined EX/MEM stage 
becomes the longest-latency stage:

Cycle time with 5 stages Cycle time with 4 stages Speedup

200 ps (IF) 210 ps (MEM � 20 ps) (9*200)/(8*210) � 1.07

4.10.5

New ID 
latency New EX latency

New cycle 
time

Old cycle 
time Speedup

180 ps 140 ps 200 ps (IF) 200 ps (IF) (11*200)/(10*200) � 1.10

4.10.6  Th e cycle time remains unchanged: a 20 ps reduction in EX latency has 
no eff ect on clock cycle time because EX is not the longest-latency stage. 
Th e change does aff ect execution time because it adds one additional stall 
cycle to each branch. Because the clock cycle time does not improve but 
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the number of cycles increases, the speedup from this change will be below 
1 (a slowdown). In 4.10.3 we already computed the number of cycles when 
branch is in EX stage. We have:

 
Cycles with 
branch in EX

Execution time 
(branch in EX)

Cycles with 
branch in MEM

Execution time 
(branch in MEM) Speedup

a. 4 � 5 � 
1*2 � 11

11*200 ps � 
2200 ps

4 � 5 � 
1*3 � 12

12*200 ps � 2400 ps 0.92

4.11 

4.11.1

LW  R1,0(R1)
LW  R1,0(R1)
BEQ R1,R0,Loop
LW  R1,0(R1)
AND R1,R1,R2
LW  R1,0(R1)
LW  R1,0(R1)
BEQ R1,R0,Loop

WB
EX  MEM WB
ID  *** EX  MEM WB
IF  *** ID  EX  MEM WB
        IF  ID  *** EX  MEM WB
            IF  *** ID  EX  MEM
                    IF  ID  ***
                        IF  ***

4.11.2  In a particular clock cycle, a pipeline stage is not doing useful work if it 
is stalled or if the instruction going through that stage is not doing any 
useful work there. In the pipeline execution diagram from 4.11.1, a stage 
is stalled if its name is not shown for a particular cycles, and stages in 
which the particular instruction is not doing useful work are marked in 
blue. Note that a BEQ instruction is doing useful work in the MEM stage, 
because it is determining the correct value of the next instruction’s PC in 
that stage. We have:

Cycles per loop 
iteration

Cycles in which all stages 
do useful work

% of cycles in which all stages 
do useful work

8 0 0%

4.12 

4.12.1  Dependences to the 1st next instruction result in 2 stall cycles, and the stall 
is also 2 cycles if the dependence is to both 1st and 2nd next instruction. 
Dependences to only the 2nd next instruction result in one stall cycle. We 
have:

CPI Stall Cycles

1 � 0.35*2 � 0.15*1 � 1.85 46% (0.85/1.85)

4.12.2  With full forwarding, the only RAW data dependences that cause stalls are 
those from the MEM stage of one instruction to the 1st next instruction. 
Even this dependences causes only one stall cycle, so we have:

CPI Stall Cycles

1 � 0.20 � 1.20 17% (0.20/1.20)
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4.12.3  With forwarding only from the EX/MEM register, EX to 1st dependences 
can be satisfi ed without stalls but any other dependences (even when 
together with EX to 1st) incur a one-cycle stall. With forwarding only from 
the MEM/WB register, EX to 2nd dependences incur no stalls. MEM to 1st 
dependences still incur a one-cycle stall, and EX to 1st dependences now 
incur one stall cycle because we must wait for the instruction to complete 
the MEM stage to be able to forward to the next instruction. We compute 
stall cycles per instructions for each case as follows:

EX/MEM MEM/WB Fewer stall cycles with

0.2 � 0.05 � 0.1 � 0.1 � 0.45 0.05 � 0.2 � 0.1 � 0.35 MEM/WB

4.12.4  In 4.12.1 and 4.12.2 we have already computed the CPI without forwarding 
and with full forwarding. Now we compute time per instruction by taking 
into account the clock cycle time:

Without forwarding With forwarding Speedup

1.85*150 ps � 277.5 ps 1.20*150 ps � 180 ps 1.54

4.12.5  We already computed the time per instruction for full forwarding in 
4.12.4. Now we compute time-per instruction with time-travel forwarding 
and the speedup over full forwarding:

With full forwarding Time-travel forwarding Speedup

1.20*150 ps � 180 ps 1*250 ps � 250 ps 0.72

4.12.6

EX/MEM MEM/WB Shorter time per instruction with

1.45*150 ps � 217.5 1.35*150 ps � 202.5 ps MEM/WB

4.13 

4.13.1
ADD R5,R2,R1
NOP
NOP
LW R3,4(R5)
LW R2,0(R2)
NOP
OR R3,R5,R3
NOP
NOP
SW R3,0(R5)
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4.13.2  We can move up an instruction by swapping its place with another 
instruction that has no dependences with it, so we can try to fi ll some 
NOP slots with such instructions. We can also use R7 to eliminate WAW 
or WAR dependences so we can have more instructions to move up.

I1: ADD R5,R2,R1
I3: LW  R2,0(R2)
NOP
I2: LW  R3,4(R5)
NOP
NOP
I4: OR  R3,R5,R3
NOP
NOP
I5: SW  R3,0(R5)

Moved up to fi ll NOP slot

Had to add another NOP here,
so there is no performance gain

4.13.3  With forwarding, the hazard detection unit is still needed because it must 
insert a one-cycle stall whenever the load supplies a value to the instruction 
that immediately follows that load. Without the hazard detection unit, the 
instruction that depends on the immediately preceding load gets the stale 
value the register had before the load instruction.

Code executes correctly (for both loads, there is no RAW dependence between the load and the 
next instruction).

4.13.4  Th e outputs of the hazard detection unit are PCWrite, IF/IDWrite, and 
ID/EXZero (which controls the Mux aft er the output of the Control 
unit). Note that IF/IDWrite is always equal to PCWrite, and ED/ExZero 
is always the opposite of PCWrite. As a result, we will only show the value 
of PCWrite for each cycle. Th e outputs of the forwarding unit is ALUin1 
and ALUin2, which control Muxes that select the fi rst and second input 
of the ALU. Th e three possible values for ALUin1 or ALUin2 are 0 (no 
forwarding), 1 (forward ALU output from previous instruction), or 2 
(forward data value for second-previous instruction). We have:

Instruction sequence
First fi ve cycles
1  2  3   4  5 Signals

ADD R5,R2,R1
LW  R3,4(R5)
LW  R2,0(R2)
OR  R3,R5,R3
SW  R3,0(R5)

IF ID EX MEM WB
   IF ID EX  MEM
      IF ID  EX
         IF  ID
             IF

1: PCWrite=1, ALUin1=X, ALUin2=X
2: PCWrite=1, ALUin1=X, ALUin2=X
3: PCWrite=1, ALUin1=0, ALUin2=0
4: PCWrite=1, ALUin1=1, ALUin2=0
5: PCWrite=1, ALUin1=0, ALUin2=0

4.13.5  Th e instruction that is currently in the ID stage needs to be stalled if it 
depends on a value produced by the instruction in the EX or the instruction 
in the MEM stage. So we need to check the destination register of these two 
instructions. For the instruction in the EX stage, we need to check Rd for 
R-type instructions and Rd for loads. For the instruction in the MEM stage, 
the destination register is already selected (by the Mux in the EX stage) so we 
need to check that register number (this is the bottommost output of the EX/
MEM pipeline register). Th e additional inputs to the hazard detection unit 
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are register Rd from the ID/EX pipeline register and the output number of 
the output register from the EX/MEM pipeline register. Th e Rt fi eld from the 
ID/EX register is already an input of the hazard detection unit in Figure 4.60.

No additional outputs are needed. We can stall the pipeline using the three 
output signals that we already have.

4.13.6  As explained for part e, we only need to specify the value of the PCWrite 
signal, because IF/IDWrite is equal to PCWrite and the ID/EXzero signal 
is its opposite.We have:

Instruction sequence
First fi ve cycles
1  2  3   4  5 Signals

ADD R5,R2,R1
LW  R3,4(R5)
LW  R2,0(R2)
OR  R3,R5,R3
SW  R3,0(R5)

IF ID EX MEM WB
   IF ID *** ***
      IF *** ***
             ***

1: PCWrite=1
2: PCWrite=1
3: PCWrite=1
4: PCWrite=0
5: PCWrite=0

4.14 

4.14.1

Executed Instructions
Pipeline Cycles

1   2   3  4   5   6   7   8   9   10  11  12  13  14

LW  R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW  R3,0(R2)
BEQ R3,R0,Label1 (T)
BEQ R2,R0,Label2 (T)
SW  R1,0(R2)

IF  ID  EX MEM WB
    IF  ID *** EX  MEM WB
                   IF  ID  EX  MEM WB
                       IF  ID  *** EX  MEM WB
                           IF  *** ID  EX  MEM WB
                                   IF  ID  EX  MEM WB

4.14.2

Executed Instructions
Pipeline Cycles

1   2   3  4   5   6   7   8   9   10  11  12  13  14

LW  R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW  R3,0(R2)
BEQ R3,R0,Label1 (T)
ADD R1,R3,R1
BEQ R2,R0,Label2 (T)
LW  R3,0(R2)
SW  R1,0(R2)

IF  ID  EX MEM WB
    IF  ID *** EX  MEM WB
        IF *** ID  EX  MEM WB
                   IF  ID  EX  MEM WB
                       IF  ID  EX  MEM WB
                           IF  ID  EX  MEM WB
                               IF  ID  EX  MEM WB
                                   IF  ID  EX  MEM WB

4.14.3
LW R2,0(R1)

Label1: BEZ R2,Label2 ; Not taken once, then taken
LW R3,0(R2)
BEZ R3,Label1 ; Taken
ADD R1,R3,R1

Label2: SW R1,0(R2)
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4.14.4  Th e hazard detection logic must detect situations when the branch 
depends on the result of the previous R-type instruction, or on the result 
of two previous loads. When the branch uses the values of its register 
operands in its ID stage, the R-type instruction’s result is still being 
generated in the EX stage. Th us we must stall the processor and repeat 
the ID stage of the branch in the next cycle. Similarly, if the branch 
depends on a load that immediately precedes it, the result of the load 
is only generated two cycles aft er the branch enters the ID stage, so we 
must stall the branch for two cycles. Finally, if the branch depends on 
a load that is the second-previous instruction, the load is completing 
its MEM stage when the branch is in its ID stage, so we must stall the 
branch for one cycle. In all three cases, the hazard is a data hazard.

Note that in all three cases we assume that the values of preceding 
instructions are forwarded to the ID stage of the branch if possible.

4.14.5  For part a we have already shows the pipeline execution diagram for the 
case when branches are executed in the EX stage. Th e following is the 
pipeline diagram when branches are executed in the ID stage, including 
new stalls due to data dependences described for part d:

Executed Instructions
Pipeline Cycles

1  2  3  4  5  6  7  8  9  10  11 12 13 14 15

LW  R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW  R3,0(R2)
BEQ R3,R0,Label1 (T)
BEQ R2,R0,Label2 (T)
SW  R1,0(R2)

IF  ID  EX MEM WB
    IF  *** ***ID  EX MEM WB
                   IF ID  EX  MEM WB
                      IF  *** *** ID   EX MEM WB
                                   IF  ID EX  MEM WB
                                       IF ID  EX  MEM WB

Now the speedup can be computed as:

14/15 � 0.93

4.14.6  Branch instructions are now executed in the ID stage. If the branch 
instruction is using a register value produced by the immediately preceding 
instruction, as we described for part d the branch must be stalled because 
the preceding instruction is in the EX stage when the branch is already 
using the stale register values in the ID stage. If the branch in the ID stage 
depends on an R-type instruction that is in the MEM stage, we need 
forwarding to ensure correct execution of the branch. Similarly, if the 
branch in the ID stage depends on an R-type of load instruction in the 
WB stage, we need forwarding to ensure correct execution of the branch. 
Overall, we need another forwarding unit that takes the same inputs as the 
one that forwards to the EX stage. Th e new forwarding unit should control 
two Muxes placed right before the branch comparator. Each Mux selects 
between the value read from Registers, the ALU output from the EX/
MEM pipeline register, and the data value from the MEM/WB pipeline 
register. Th e complexity of the new forwarding unit is the same as the 
complexity of the existing one.
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4.15 

4.15.1  Each branch that is not correctly predicted by the always-taken predictor 
will cause 3 stall cycles, so we have:

Extra CPI

3*(1 − 0.45)*0.25 � 0.41

4.15.2  Each branch that is not correctly predicted by the always-not-taken 
predictor will cause 3 stall cycles, so we have:

Extra CPI

3*(1 − 0.55)*0.25 � 0.34

4.15.3  Each branch that is not correctly predicted by the 2-bit predictor will 
cause 3 stall cycles, so we have:

Extra CPI

3*(1 − 0.85)*0.25 � 0.113

4.15.4  Correctly predicted branches had CPI of 1 and now they become ALU 
instructions whose CPI is also 1. Incorrectly predicted instructions that 
are converted also become ALU instructions with a CPI of 1, so we have:

CPI without conversion CPI with conversion
Speedup from 

conversion

1 � 3*(1-0.85)*0.25 � 1.113 1 � 3*(1-0.85)*0.25*0.5 � 1.056 1.113/1.056 � 1.054

4.15.5  Every converted branch instruction now takes an extra cycle to execute, 
so we have:

CPI without 
conversion

Cycles per original instruction with 
conversion Speedup from conversion

1.113 1 � (1 � 3*(1 − 0.85))*0.25*0.5 � 1.181 1.113/1.181 � 0.94

4.15.6  Let the total number of branch instructions executed in the program be 
B. Th en we have:

Correctly 
predicted Correctly predicted non-loop-back Accuracy on non-loop-back branches

B*0.85 B*0.05 (B*0.05)/(B*0.20) � 0.25 (25%)

4.16 

4.16.1

Always Taken Always not-taken

3/5 � 60% 2/5 � 40%
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4.16.2

Outcomes
Predictor value at 
time of prediction

Correct or 
Incorrect Accuracy

T, NT, T, T 0,1,0,1 I,C,I,I 25%

4.16.3  Th e fi rst few recurrences of this pattern do not have the same accuracy as 
the later ones because the predictor is still warming up. To determine the 
accuracy in the “steady state”, we must work through the branch predictions 
until the predictor values start repeating (i.e., until the predictor has 
the same value at the start of the current and the next recurrence of the 
pattern).

Outcomes
Predictor value

at time of prediction
Correct or Incorrect

(in steady state)
Accuracy in
steady state

T, NT, T, T, NT 1st occurrence: 0,1,0,1,2
2nd occurrence: 1,2,1,2,3
3rd occurrence: 2,3,2,3,3
4th occurrence: 2,3,2,3,3

C,I,C,C,I 60%

4.16.4  Th e predictor should be an N-bit shift  register, where N is the number 
of branch outcomes in the target pattern. Th e shift  register should be 
initialized with the pattern itself (0 for NT, 1 for T), and the prediction is 
always the value in the left most bit of the shift  register. Th e register should 
be shift ed aft er each predicted branch.

4.16.5  Since the predictor’s output is always the opposite of the actual outcome of 
the branch instruction, the accuracy is zero.

4.16.6  Th e predictor is the same as in part d, except that it should compare its 
prediction to the actual outcome and invert (logical NOT) all the bits in 
the shift  register if the prediction is incorrect. Th is predictor still always 
perfectly predicts the given pattern. For the opposite pattern, the fi rst 
prediction will be incorrect, so the predictor’s state is inverted and aft er 
that the predictions are always correct. Overall, there is no warm-up 
period for the given pattern, and the warm-up period for the opposite 
pattern is only one branch.

4.17 

4.17.1

Instruction 1 Instruction 2

Invalid target address (EX) Invalid data address (MEM)

4.17.2  Th e Mux that selects the next PC must have inputs added to it. Each input 
is a constant address of an exception handler. Th e exception detectors 
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must be added to the appropriate pipeline stage and the outputs of these 
detectors must be used to control the pre-PC Mux, and also to convert to 
NOPs instructions that are already in the pipeline behind the exception-
triggering instruction.

4.17.3  Instructions are fetched normally until the exception is detected. When 
the exception is detected, all instructions that are in the pipeline aft er 
the fi rst instruction must be converted to NOPs. As a result, the second 
instruction never completes and does not aff ect pipeline state. In the cycle 
that immediately follows the cycle in which the exception is detected, the 
processor will fetch the fi rst instruction of the exception handler.

4.17.4  Th is approach requires us to fetch the address of the handler from memory. 
We must add the code of the exception to the address of the exception 
vector table, read the handler’s address from memory, and jump to that 
address. One way of doing this is to handle it like a special instruction that 
computer the address in EX, loads the handler’s address in MEM, and sets 
the PC in WB.

4.17.5  We need a special instruction that allows us to move a value from the 
(exception) Cause register to a general-purpose register. We must fi rst 
save the general-purpose register (so we can restore it later), load the 
Cause register into it, add the address of the vector table to it, use the 
result as an address for a load that gets the address of the right exception 
handler from memory, and fi nally jump to that handler.

4.18 

4.18.1

 ADD R5,R0,R0
Again: BEQ R5,R6,End
 ADD R10,R5,R1
 LW R11,0(R10)
 LW R10,1(R10)
 SUB R10,R11,R10
 ADD R11,R5,R2
 SW R10,0(R11)
 ADDI R5,R5,2
 BEW R0,R0,Again
End:



S-18 Chapter 4 Solutions

4.18.2

4.18.3  Th e only way to execute 2 instructions fully in parallel is for a load/store 
to execute together with another instruction. To achieve this, around each 
load/store instruction we will try to put non-load/store instructions that 
have no dependences with the load/store.

ADD R5,R0,R0
Again: ADD R10,R5,R1

BEQ R5,R6,End
LW R11,0(R10)
ADD R12,R5,R2
LW R10,1(R10)
ADDI R5,R5,2
SUB R10,R11,R10
SW R10,0(R12)
BEQ R0,R0,Again

End:

Note that we are now computing a�i before we check whether we 
should continue the loop. This is OK because we are allowed to 
“trash” R10. If we exit the loop one extra instruction is executed, but 
if we stay in the loop we allow both of the memory instructions to 
execute in parallel with other instructions
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4.18.4

4.18.5

CPI for 1-issue CPI for 2-issue Speedup

1.11 (10 cycles per 9 instructions). 
There is 1 stall cycle in each 
iteration due to a data hazard 
between the second LW and the 
next instruction (SUB).

1.06 (19 cycles per 18 instructions). Neither 
of the two LW instructions can execute in 
parallel with another instruction, and SUB 
stalls because it depends on the second LW. 
The SW instruction executes in parallel with 
ADDI in even-numbered iterations.

1.05

4.18.6

CPI for1-
issue CPI for 2-issue Speedup

1.11 0.83 (15 cycles per 18 instructions). In all iterations, SUB is stalled 
because it depends on the second LW. The only instructions that 
execute in odd-numbered iterations as a pair are ADDI and BEQ. 
In even-numbered iterations, only the two LW instruction cannot 
execute as a pair.

1.34

4.19 

4.19.1  Th e energy for the two designs is the same: I-Mem is read, two registers 
are read, and a register is written. We have:

140 pJ � 2*70 ps � 60 pJ � 340 pJ
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4.19.2  Th e instruction memory is read for all instructions. Every instruction also 
results in two register reads (even if only one of those values is actually 
used). A load instruction results in a memory read and a register write, 
a store instruction results in a memory write, and all other instructions 
result in either no register write (e.g., BEQ) or a register write. Because 
the sum of memory read and register write energy is larger than memory 
write energy, the worst-case instruction is a load instruction. For the 
energy spent by a load, we have:

140 pJ � 2*70 pJ � 60 pJ � 140 pJ � 480 pJ

4.19.3 Instruction memory must be read for every instruction. However, we 
can avoid reading registers whose values are not going to be used. To do this, we 
must add RegRead1 and RegRead2 control inputs to the Registers unit to enable or 
disable each register read. We must generate these control signals quickly to avoid 
lengthening the clock cycle time. With these new control signals, a LW instruction 
results in only one register read (we still must read the register used to generate the 
address), so we have:

Energy before change Energy saved by change % Savings

140 pJ � 2*70 pJ � 60 pJ � 140 pJ � 480 pJ 70 pJ 14.6%

4.19.4 Before the change, the Control unit decodes the instruction while register 
reads are happening. Aft er the change, the latencies of Control and Register Read 
cannot be overlapped. Th is increases the latency of the ID stage and could aff ect 
the processor’s clock cycle time if the ID stage becomes the longest-latency stage. 
We have:

Clock cycle time before change Clock cycle time after change

250 ps (D-Mem in MEM stage) No change (150 ps � 90 ps � 250 ps)

4.19.5 If memory is read in every cycle, the value is either needed (for a load 
instruction), or it does not get past the WB Mux (or a non-load instruction that 
writes to a register), or it does not get written to any register (all other instructions, 
including stalls). Th is change does not aff ect clock cycle time because the clock 
cycle time must already allow enough time for memory to be read in the MEM 
stage. It does aff ect energy: a memory read occurs in every cycle instead of only in 
cycles when a load instruction is in the MEM stage.

I-Mem 
active 
energy

I-Mem 
latency

Clock cycle 
time Total I-Mem energy Idle energy % 

140 pJ 200 ps 250 ps 140 pJ � 50 ps*0.1*140 
pJ/200 ps  � 143.5 pJ

3.5 pJ/143.5 pJ � 2.44%
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