
Solutions

4

 Chapter 4 Solutions S-3

4.1

4.1.1 Th e values of the signals are as follows:

RegWrite MemRead ALUMux MemWrite ALUop RegMux Branch

0 0 1 (Imm) 1 ADD X 0

ALUMux is the control signal that controls the Mux at the ALU input, 0 (Reg)
selects the output of the register fi le, and 1 (Imm) selects the immediate
from the instruction word as the second input to the ALU.

RegMux is the control signal that controls the Mux at the Data input to the
register fi le, 0 (ALU) selects the output of the ALU, and 1 (Mem) selects the
output of memory.

A value of X is a “don’t care” (does not matter if signal is 0 or 1)

4.1.2 All except branch Add unit and write port of the Registers

4.1.3 Outputs that are not used: Branch Add, write port of Registers

No outputs: None (all units produce outputs)

4.2

4.2.1 Th is instruction uses instruction memory, both register read ports, the ALU
to add Rd and Rs together, data memory, and write port in Registers.

4.2.2 None. Th is instruction can be implemented using existing blocks.

4.2.3 None. Th is instruction can be implemented without adding new control
signals. It only requires changes in the Control logic.

4.3

4.3.1 Clock cycle time is determined by the critical path, which for the given
latencies happens to be to get the data value for the load instruction: I-Mem
(read instruction), Regs (takes longer than Control), Mux (select ALU
input), ALU, Data Memory, and Mux (select value from memory to be
written into Registers). Th e latency of this path is 400 ps � 200 ps � 30 ps
� 120 ps � 350 ps � 30 ps � 1130 ps. 1430 ps (1130 ps � 300 ps, ALU is
on the critical path).

4.3.2 Th e speedup comes from changes in clock cycle time and changes to the
number of clock cycles we need for the program: We need 5% fewer cycles
for a program, but cycle time is 1430 instead of 1130, so we have a speedup
of (1/0.95)*(1130/1430) � 0.83, which means we actually have a slowdown.

S-4 Chapter 4 Solutions

4.3.3 Th e cost is always the total cost of all components (not just those on the
critical path, so the original processor has a cost of I-Mem, Regs, Control,
ALU, D-Mem, 2 Add units and 3 Mux units, for a total cost of 1000 � 200
� 500 � 100 � 2000 � 2*30 � 3*10 � 3890.

We will compute cost relative to this baseline. Th e performance relative
to this baseline is the speedup we previously computed, and our cost/
performance relative to the baseline is as follows:

New Cost: 3890 � 600 � 4490

Relative Cost: 4490/3890 � 1.15

Cost/Performance: 1.15/0.83 � 1.39. We are paying signifi cantly more for
signifi cantly worse performance; the cost/performance is a lot worse than
with the unmodifi ed processor.

4.4

4.4.1 I-Mem takes longer than the Add unit, so the clock cycle time is equal to
the latency of the I-Mem:

200 ps

4.4.2 Th e critical path for this instruction is through the instruction memory,
Sign-extend and Shift -left -2 to get the off set, Add unit to compute the
new PC, and Mux to select that value instead of PC�4. Note that the path
through the other Add unit is shorter, because the latency of I-Mem is
longer that the latency of the Add unit. We have:

200 ps � 15 ps � 10 ps � 70 ps � 20 ps � 315 ps

4.4.3 Conditional branches have the same long-latency path that computes the
branch address as unconditional branches do. Additionally, they have a long-
latency path that goes through Registers, Mux, and ALU to compute the PCSrc
condition. Th e critical path is the longer of the two, and the path through PCSrc
is longer for these latencies:

200 ps � 90 ps � 20 ps � 90 ps � 20 ps � 420 ps

4.4.4 PC-relative branches.

4.4.5 PC-relative unconditional branch instructions. We saw in part c that this
is not on the critical path of conditional branches, and it is only needed for
PC-relative branches. Note that MIPS does not have actual unconditional
branches (bne zero,zero,Label plays that role so there is no need for
unconditional branch opcodes) so for MIPS the answer to this question is
actually “None”.

4.4.6 Of the two instructions (BNE and ADD), BNE has a longer critical path so
it determines the clock cycle time. Note that every path for ADD is shorter
than or equal to the corresponding path for BNE, so changes in unit latency

 Chapter 4 Solutions S-5

will not aff ect this. As a result, we focus on how the unit’s latency aff ects the
critical path of BNE.
Th is unit is not on the critical path, so the only way for this unit to become
critical is to increase its latency until the path for address computation
through sign extend, shift left , and branch add becomes longer than the
path for PCSrc through registers, Mux, and ALU. Th e latency of Regs, Mux,
and ALU is 200 ps and the latency of Sign-extend, Shift -left -2, and Add is
95 ps, so the latency of Shift -left -2 must be increased by 105 ps or more for
it to aff ect clock cycle time.

4.5

4.5.1 Th e data memory is used by LW and SW instructions, so the answer is:
25% � 10% � 35%

4.5.2 Th e sign-extend circuit is actually computing a result in every cycle, but its
output is ignored for ADD and NOT instructions. Th e input of the sign-
extend circuit is needed for ADDI (to provide the immediate ALU operand),
BEQ (to provide the PC-relative off set), and LW and SW (to provide the
off set used in addressing memory) so the answer is:
20% � 25% � 25% � 10% � 80%

4.6

4.6.1 To test for a stuck-at-0 fault on a wire, we need an instruction that puts that
wire to a value of 1 and has a diff erent result if the value on the wire is stuck
at zero:
If this signal is stuck at zero, an instruction that writes to an odd-numbered
register will end up writing to the even-numbered register. So if we place
a value of zero in R30 and a value of 1 in R31, and then execute ADD
R31,R30,R30 the value of R31 is supposed to be zero. If bit 0 of the Write
Register input to the Registers unit is stuck at zero, the value is written to
R30 instead and R31 will be 1.

4.6.2 Th e test for stuck-at-zero requires an instruction that sets the signal to 1,
and the test for stuck-at-1 requires an instruction that sets the signal to 0.
Because the signal cannot be both 0 and 1 in the same cycle, we cannot test
the same signal simultaneously for stuck-at-0 and stuck-at-1 using only one
instruction. Th e test for stuck-at-1 is analogous to the stuck-at-0 test:

We can place a value of zero in R31 and a value of 1 in R30, then use ADD
R30,R31,R31 which is supposed to place 0 in R30. If this signal is stuck-at-1,
the write goes to R31 instead, so the value in R30 remains 1.

4.6.3 We need to rewrite the program to use only odd-numbered registers.

4.6.4 To test for this fault, we need an instruction whose MemRead is 1, so it has
to be a load. Th e instruction also needs to have RegDst set to 0, which is
the case for loads. Finally, the instruction needs to have a diff erent result if

S-6 Chapter 4 Solutions

MemRead is set to 0. For a load, MemRead�0 result in not reading memory,
so the value placed in the register is “random” (whatever happened to be at
the output of the memory unit). Unfortunately, this “random” value can be
the same as the one already in the register, so this test is not conclusive.

4.6.5 To test for this fault, we need an instruction whose Jump is 1, so it has to be
the jump instruction. However, for the jump instruction the RegDst signal is
“don’t care” because it does not write to any registers, so the implementation
may or may not allow us to set RegDst to 0 so we can test for this fault. As a
result, we cannot reliably test for this fault.

4.7

4.7.1
Sign-extend Jump’s shift-left-2

00000000000000000000000000010100 0001100010000000000001010000

4.7.2
ALUOp[1-0] Instruction[5-0]

00 010100

4.7.3
New PC Path

PC�4 PC to Add (PC�4) to branch Mux to jump Mux to PC

4.7.4
WrReg Mux ALU Mux Mem/ALU Mux Branch Mux Jump Mux

2 or 0 (RegDst is X) 20 X PC�4 PC�4

4.7.5
ALU Add (PC�4) Add (Branch)

-3 and 20 PC and 4 PC�4 and 20*4

4.7.6
Read Register 1 Read Register 2 Write Register Write Data RegWrite

4.8

4.8.1
Pipelined Single-cycle

350 ps 1250 ps

4.8.2
Pipelined Single-cycle

1750 ps 1250 ps

4.8.3
Stage to split New clock cycle time

ID 300 ps

 Chapter 4 Solutions S-7

4.8.4
a. 35%

4.8.5
a. 65%

4.8.6 We already computed clock cycle times for pipelined and single cycle
organizations, and the multi-cycle organization has the same clock cycle
time as the pipelined organization. We will compute execution times
relative to the pipelined organization. In single-cycle, every instruction
takes one (long) clock cycle. In pipelined, a long-running program with
no pipeline stalls completes one instruction in every cycle. Finally, a multi-
cycle organization completes a LW in 5 cycles, a SW in 4 cycles (no WB), an
ALU instruction in 4 cycles (no MEM), and a BEQ in 4 cycles (no WB). So
we have the speedup of pipeline

Multi-cycle execution time is X
times pipelined execution time,

where X is:
Single-cycle execution time is X times
pipelined execution time, where X is:

a. 0.20*5�0.80*4�4.20 1250 ps/350 ps�3.57

4.9

4.9.1
Instruction sequence Dependences

I1: OR R1,R2,R3 RAW on R1 from I1 to I2 and I3
I2: OR R2,R1,R4 RAW on R2 from I2 to I3
I3: OR R1,R1,R2 WAR on R2 from I1 to I2

WAR on R1 from I2 to I3

WAW on R1 from I1 to I3

4.9.2 In the basic fi ve-stage pipeline WAR and WAW dependences do not cause
any hazards. Without forwarding, any RAW dependence between an
instruction and the next two instructions (if register read happens in the
second half of the clock cycle and the register write happens in the fi rst
half). Th e code that eliminates these hazards by inserting NOP instructions
is:

Instruction sequence

OR R1,R2,R3

NOP Delay I2 to avoid RAW hazard on R1 from I1
NOP

OR R2,R1,R4

NOP Delay I3 to avoid RAW hazard on R2 from I2
NOP

OR R1,R1,R2

S-8 Chapter 4 Solutions

4.9.3 With full forwarding, an ALU instruction can forward a value to EX stage
of the next instruction without a hazard. However, a load cannot forward
to the EX stage of the next instruction (by can to the instruction aft er that).
Th e code that eliminates these hazards by inserting NOP instructions is:

Instruction sequence

OR R1,R2,R3

OR R2,R1,R4 No RAW hazard on R1 from I1 (forwarded)
OR R1,R1,R2 No RAW hazard on R2 from I2 (forwarded)

4.9.4 Th e total execution time is the clock cycle time times the number of cycles.
Without any stalls, a three-instruction sequence executes in 7 cycles (5 to
complete the fi rst instruction, then one per instruction). Th e execution
without forwarding must add a stall for every NOP we had in 4.9.2, and
execution forwarding must add a stall cycle for every NOP we had in 4.9.3.
Overall, we get:

No forwarding With forwarding Speedup due to forwarding

(7 � 4)*180 ps � 1980 ps 7*240 ps � 1680 ps 1.18

4.9.5 With ALU-ALU-only forwarding, an ALU instruction can forward to the
next instruction, but not to the second-next instruction (because that would
be forwarding from MEM to EX). A load cannot forward at all, because it
determines the data value in MEM stage, when it is too late for ALU-ALU
forwarding. We have:

Instruction sequence

OR R1,R2,R3

OR R2,R1,R4 ALU-ALU forwarding of R1 from I1
OR R1,R1,R2 ALU-ALU forwarding of R2 from I2

4.9.6

No forwarding With ALU-ALU forwarding only
Speedup with ALU-ALU

forwarding

(7 � 4)*180 ps � 1980 ps 7*210 ps � 1470 ps 1.35

4.10

4.10.1 In the pipelined execution shown below, *** represents a stall when an
instruction cannot be fetched because a load or store instruction is using
the memory in that cycle. Cycles are represented from left to right, and for
each instruction we show the pipeline stage it is in during that cycle:

Instruction Pipeline Stage Cycles

SW R16,12(R6)
LW R16,8(R6)
BEQ R5,R4,Lbl
ADD R5,R1,R4
SLT R5,R15,R4

IF ID EX MEM WB
 IF ED EX MEM WB
 IF ID EX MEM WB
 *** *** IF ID EX MEM WB
 IF ID EX MEM WB

11

 Chapter 4 Solutions S-9

We can not add NOPs to the code to eliminate this hazard – NOPs need to
be fetched just like any other instructions, so this hazard must be addressed
with a hardware hazard detection unit in the processor.

4.10.2 Th is change only saves one cycle in an entire execution without data
hazards (such as the one given). Th is cycle is saved because the last
instruction fi nishes one cycle earlier (one less stage to go through). If there
were data hazards from loads to other instructions, the change would help
eliminate some stall cycles.

Instructions Executed Cycles with 5 stages Cycles with 4 stages Speedup

5 4 � 5 � 9 3 � 5 � 8 9/8 � 1.13

4.10.3 Stall-on-branch delays the fetch of the next instruction until the branch
is executed. When branches execute in the EXE stage, each branch causes
two stall cycles. When branches execute in the ID stage, each branch only
causes one stall cycle. Without branch stalls (e.g., with perfect branch
prediction) there are no stalls, and the execution time is 4 plus the number
of executed instructions. We have:

Instructions
Executed

Branches
Executed

Cycles with branch
in EXE

Cycles with branch
in ID Speedup

5 1 4 � 5 � 1*2 � 11 4 � 5 � 1*1 � 10 11/10 � 1.10

4.10.4 Th e number of cycles for the (normal) 5-stage and the (combined EX/
MEM) 4-stage pipeline is already computed in 4.10.2. Th e clock cycle
time is equal to the latency of the longest-latency stage. Combining EX
and MEM stages aff ects clock time only if the combined EX/MEM stage
becomes the longest-latency stage:

Cycle time with 5 stages Cycle time with 4 stages Speedup

200 ps (IF) 210 ps (MEM � 20 ps) (9*200)/(8*210) � 1.07

4.10.5

New ID
latency New EX latency

New cycle
time

Old cycle
time Speedup

180 ps 140 ps 200 ps (IF) 200 ps (IF) (11*200)/(10*200) � 1.10

4.10.6 Th e cycle time remains unchanged: a 20 ps reduction in EX latency has
no eff ect on clock cycle time because EX is not the longest-latency stage.
Th e change does aff ect execution time because it adds one additional stall
cycle to each branch. Because the clock cycle time does not improve but

S-10 Chapter 4 Solutions

the number of cycles increases, the speedup from this change will be below
1 (a slowdown). In 4.10.3 we already computed the number of cycles when
branch is in EX stage. We have:

Cycles with
branch in EX

Execution time
(branch in EX)

Cycles with
branch in MEM

Execution time
(branch in MEM) Speedup

a. 4 � 5 �
1*2 � 11

11*200 ps �
2200 ps

4 � 5 �
1*3 � 12

12*200 ps � 2400 ps 0.92

4.11

4.11.1

LW R1,0(R1)
LW R1,0(R1)
BEQ R1,R0,Loop
LW R1,0(R1)
AND R1,R1,R2
LW R1,0(R1)
LW R1,0(R1)
BEQ R1,R0,Loop

WB
EX MEM WB
ID *** EX MEM WB
IF *** ID EX MEM WB
 IF ID *** EX MEM WB
 IF *** ID EX MEM
 IF ID ***
 IF ***

4.11.2 In a particular clock cycle, a pipeline stage is not doing useful work if it
is stalled or if the instruction going through that stage is not doing any
useful work there. In the pipeline execution diagram from 4.11.1, a stage
is stalled if its name is not shown for a particular cycles, and stages in
which the particular instruction is not doing useful work are marked in
blue. Note that a BEQ instruction is doing useful work in the MEM stage,
because it is determining the correct value of the next instruction’s PC in
that stage. We have:

Cycles per loop
iteration

Cycles in which all stages
do useful work

% of cycles in which all stages
do useful work

8 0 0%

4.12

4.12.1 Dependences to the 1st next instruction result in 2 stall cycles, and the stall
is also 2 cycles if the dependence is to both 1st and 2nd next instruction.
Dependences to only the 2nd next instruction result in one stall cycle. We
have:

CPI Stall Cycles

1 � 0.35*2 � 0.15*1 � 1.85 46% (0.85/1.85)

4.12.2 With full forwarding, the only RAW data dependences that cause stalls are
those from the MEM stage of one instruction to the 1st next instruction.
Even this dependences causes only one stall cycle, so we have:

CPI Stall Cycles

1 � 0.20 � 1.20 17% (0.20/1.20)

 Chapter 4 Solutions S-11

4.12.3 With forwarding only from the EX/MEM register, EX to 1st dependences
can be satisfi ed without stalls but any other dependences (even when
together with EX to 1st) incur a one-cycle stall. With forwarding only from
the MEM/WB register, EX to 2nd dependences incur no stalls. MEM to 1st
dependences still incur a one-cycle stall, and EX to 1st dependences now
incur one stall cycle because we must wait for the instruction to complete
the MEM stage to be able to forward to the next instruction. We compute
stall cycles per instructions for each case as follows:

EX/MEM MEM/WB Fewer stall cycles with

0.2 � 0.05 � 0.1 � 0.1 � 0.45 0.05 � 0.2 � 0.1 � 0.35 MEM/WB

4.12.4 In 4.12.1 and 4.12.2 we have already computed the CPI without forwarding
and with full forwarding. Now we compute time per instruction by taking
into account the clock cycle time:

Without forwarding With forwarding Speedup

1.85*150 ps � 277.5 ps 1.20*150 ps � 180 ps 1.54

4.12.5 We already computed the time per instruction for full forwarding in
4.12.4. Now we compute time-per instruction with time-travel forwarding
and the speedup over full forwarding:

With full forwarding Time-travel forwarding Speedup

1.20*150 ps � 180 ps 1*250 ps � 250 ps 0.72

4.12.6

EX/MEM MEM/WB Shorter time per instruction with

1.45*150 ps � 217.5 1.35*150 ps � 202.5 ps MEM/WB

4.13

4.13.1
ADD R5,R2,R1
NOP
NOP
LW R3,4(R5)
LW R2,0(R2)
NOP
OR R3,R5,R3
NOP
NOP
SW R3,0(R5)

S-12 Chapter 4 Solutions

4.13.2 We can move up an instruction by swapping its place with another
instruction that has no dependences with it, so we can try to fi ll some
NOP slots with such instructions. We can also use R7 to eliminate WAW
or WAR dependences so we can have more instructions to move up.

I1: ADD R5,R2,R1
I3: LW R2,0(R2)
NOP
I2: LW R3,4(R5)
NOP
NOP
I4: OR R3,R5,R3
NOP
NOP
I5: SW R3,0(R5)

Moved up to fi ll NOP slot

Had to add another NOP here,
so there is no performance gain

4.13.3 With forwarding, the hazard detection unit is still needed because it must
insert a one-cycle stall whenever the load supplies a value to the instruction
that immediately follows that load. Without the hazard detection unit, the
instruction that depends on the immediately preceding load gets the stale
value the register had before the load instruction.

Code executes correctly (for both loads, there is no RAW dependence between the load and the
next instruction).

4.13.4 Th e outputs of the hazard detection unit are PCWrite, IF/IDWrite, and
ID/EXZero (which controls the Mux aft er the output of the Control
unit). Note that IF/IDWrite is always equal to PCWrite, and ED/ExZero
is always the opposite of PCWrite. As a result, we will only show the value
of PCWrite for each cycle. Th e outputs of the forwarding unit is ALUin1
and ALUin2, which control Muxes that select the fi rst and second input
of the ALU. Th e three possible values for ALUin1 or ALUin2 are 0 (no
forwarding), 1 (forward ALU output from previous instruction), or 2
(forward data value for second-previous instruction). We have:

Instruction sequence
First fi ve cycles
1 2 3 4 5 Signals

ADD R5,R2,R1
LW R3,4(R5)
LW R2,0(R2)
OR R3,R5,R3
SW R3,0(R5)

IF ID EX MEM WB
 IF ID EX MEM
 IF ID EX
 IF ID
 IF

1: PCWrite=1, ALUin1=X, ALUin2=X
2: PCWrite=1, ALUin1=X, ALUin2=X
3: PCWrite=1, ALUin1=0, ALUin2=0
4: PCWrite=1, ALUin1=1, ALUin2=0
5: PCWrite=1, ALUin1=0, ALUin2=0

4.13.5 Th e instruction that is currently in the ID stage needs to be stalled if it
depends on a value produced by the instruction in the EX or the instruction
in the MEM stage. So we need to check the destination register of these two
instructions. For the instruction in the EX stage, we need to check Rd for
R-type instructions and Rd for loads. For the instruction in the MEM stage,
the destination register is already selected (by the Mux in the EX stage) so we
need to check that register number (this is the bottommost output of the EX/
MEM pipeline register). Th e additional inputs to the hazard detection unit

 Chapter 4 Solutions S-13

are register Rd from the ID/EX pipeline register and the output number of
the output register from the EX/MEM pipeline register. Th e Rt fi eld from the
ID/EX register is already an input of the hazard detection unit in Figure 4.60.

No additional outputs are needed. We can stall the pipeline using the three
output signals that we already have.

4.13.6 As explained for part e, we only need to specify the value of the PCWrite
signal, because IF/IDWrite is equal to PCWrite and the ID/EXzero signal
is its opposite.We have:

Instruction sequence
First fi ve cycles
1 2 3 4 5 Signals

ADD R5,R2,R1
LW R3,4(R5)
LW R2,0(R2)
OR R3,R5,R3
SW R3,0(R5)

IF ID EX MEM WB
 IF ID *** ***
 IF *** ***

1: PCWrite=1
2: PCWrite=1
3: PCWrite=1
4: PCWrite=0
5: PCWrite=0

4.14

4.14.1

Executed Instructions
Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LW R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW R3,0(R2)
BEQ R3,R0,Label1 (T)
BEQ R2,R0,Label2 (T)
SW R1,0(R2)

IF ID EX MEM WB
 IF ID *** EX MEM WB
 IF ID EX MEM WB
 IF ID *** EX MEM WB
 IF *** ID EX MEM WB
 IF ID EX MEM WB

4.14.2

Executed Instructions
Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LW R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW R3,0(R2)
BEQ R3,R0,Label1 (T)
ADD R1,R3,R1
BEQ R2,R0,Label2 (T)
LW R3,0(R2)
SW R1,0(R2)

IF ID EX MEM WB
 IF ID *** EX MEM WB
 IF *** ID EX MEM WB
 IF ID EX MEM WB
 IF ID EX MEM WB
 IF ID EX MEM WB
 IF ID EX MEM WB
 IF ID EX MEM WB

4.14.3
LW R2,0(R1)

Label1: BEZ R2,Label2 ; Not taken once, then taken
LW R3,0(R2)
BEZ R3,Label1 ; Taken
ADD R1,R3,R1

Label2: SW R1,0(R2)

S-14 Chapter 4 Solutions

4.14.4 Th e hazard detection logic must detect situations when the branch
depends on the result of the previous R-type instruction, or on the result
of two previous loads. When the branch uses the values of its register
operands in its ID stage, the R-type instruction’s result is still being
generated in the EX stage. Th us we must stall the processor and repeat
the ID stage of the branch in the next cycle. Similarly, if the branch
depends on a load that immediately precedes it, the result of the load
is only generated two cycles aft er the branch enters the ID stage, so we
must stall the branch for two cycles. Finally, if the branch depends on
a load that is the second-previous instruction, the load is completing
its MEM stage when the branch is in its ID stage, so we must stall the
branch for one cycle. In all three cases, the hazard is a data hazard.

Note that in all three cases we assume that the values of preceding
instructions are forwarded to the ID stage of the branch if possible.

4.14.5 For part a we have already shows the pipeline execution diagram for the
case when branches are executed in the EX stage. Th e following is the
pipeline diagram when branches are executed in the ID stage, including
new stalls due to data dependences described for part d:

Executed Instructions
Pipeline Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LW R2,0(R1)
BEQ R2,R0,Label2 (NT)
LW R3,0(R2)
BEQ R3,R0,Label1 (T)
BEQ R2,R0,Label2 (T)
SW R1,0(R2)

IF ID EX MEM WB
 IF *** ***ID EX MEM WB
 IF ID EX MEM WB
 IF *** *** ID EX MEM WB
 IF ID EX MEM WB
 IF ID EX MEM WB

Now the speedup can be computed as:

14/15 � 0.93

4.14.6 Branch instructions are now executed in the ID stage. If the branch
instruction is using a register value produced by the immediately preceding
instruction, as we described for part d the branch must be stalled because
the preceding instruction is in the EX stage when the branch is already
using the stale register values in the ID stage. If the branch in the ID stage
depends on an R-type instruction that is in the MEM stage, we need
forwarding to ensure correct execution of the branch. Similarly, if the
branch in the ID stage depends on an R-type of load instruction in the
WB stage, we need forwarding to ensure correct execution of the branch.
Overall, we need another forwarding unit that takes the same inputs as the
one that forwards to the EX stage. Th e new forwarding unit should control
two Muxes placed right before the branch comparator. Each Mux selects
between the value read from Registers, the ALU output from the EX/
MEM pipeline register, and the data value from the MEM/WB pipeline
register. Th e complexity of the new forwarding unit is the same as the
complexity of the existing one.

 Chapter 4 Solutions S-15

4.15

4.15.1 Each branch that is not correctly predicted by the always-taken predictor
will cause 3 stall cycles, so we have:

Extra CPI

3*(1 − 0.45)*0.25 � 0.41

4.15.2 Each branch that is not correctly predicted by the always-not-taken
predictor will cause 3 stall cycles, so we have:

Extra CPI

3*(1 − 0.55)*0.25 � 0.34

4.15.3 Each branch that is not correctly predicted by the 2-bit predictor will
cause 3 stall cycles, so we have:

Extra CPI

3*(1 − 0.85)*0.25 � 0.113

4.15.4 Correctly predicted branches had CPI of 1 and now they become ALU
instructions whose CPI is also 1. Incorrectly predicted instructions that
are converted also become ALU instructions with a CPI of 1, so we have:

CPI without conversion CPI with conversion
Speedup from

conversion

1 � 3*(1-0.85)*0.25 � 1.113 1 � 3*(1-0.85)*0.25*0.5 � 1.056 1.113/1.056 � 1.054

4.15.5 Every converted branch instruction now takes an extra cycle to execute,
so we have:

CPI without
conversion

Cycles per original instruction with
conversion Speedup from conversion

1.113 1 � (1 � 3*(1 − 0.85))*0.25*0.5 � 1.181 1.113/1.181 � 0.94

4.15.6 Let the total number of branch instructions executed in the program be
B. Th en we have:

Correctly
predicted Correctly predicted non-loop-back Accuracy on non-loop-back branches

B*0.85 B*0.05 (B*0.05)/(B*0.20) � 0.25 (25%)

4.16

4.16.1

Always Taken Always not-taken

3/5 � 60% 2/5 � 40%

S-16 Chapter 4 Solutions

4.16.2

Outcomes
Predictor value at
time of prediction

Correct or
Incorrect Accuracy

T, NT, T, T 0,1,0,1 I,C,I,I 25%

4.16.3 Th e fi rst few recurrences of this pattern do not have the same accuracy as
the later ones because the predictor is still warming up. To determine the
accuracy in the “steady state”, we must work through the branch predictions
until the predictor values start repeating (i.e., until the predictor has
the same value at the start of the current and the next recurrence of the
pattern).

Outcomes
Predictor value

at time of prediction
Correct or Incorrect

(in steady state)
Accuracy in
steady state

T, NT, T, T, NT 1st occurrence: 0,1,0,1,2
2nd occurrence: 1,2,1,2,3
3rd occurrence: 2,3,2,3,3
4th occurrence: 2,3,2,3,3

C,I,C,C,I 60%

4.16.4 Th e predictor should be an N-bit shift register, where N is the number
of branch outcomes in the target pattern. Th e shift register should be
initialized with the pattern itself (0 for NT, 1 for T), and the prediction is
always the value in the left most bit of the shift register. Th e register should
be shift ed aft er each predicted branch.

4.16.5 Since the predictor’s output is always the opposite of the actual outcome of
the branch instruction, the accuracy is zero.

4.16.6 Th e predictor is the same as in part d, except that it should compare its
prediction to the actual outcome and invert (logical NOT) all the bits in
the shift register if the prediction is incorrect. Th is predictor still always
perfectly predicts the given pattern. For the opposite pattern, the fi rst
prediction will be incorrect, so the predictor’s state is inverted and aft er
that the predictions are always correct. Overall, there is no warm-up
period for the given pattern, and the warm-up period for the opposite
pattern is only one branch.

4.17

4.17.1

Instruction 1 Instruction 2

Invalid target address (EX) Invalid data address (MEM)

4.17.2 Th e Mux that selects the next PC must have inputs added to it. Each input
is a constant address of an exception handler. Th e exception detectors

 Chapter 4 Solutions S-17

must be added to the appropriate pipeline stage and the outputs of these
detectors must be used to control the pre-PC Mux, and also to convert to
NOPs instructions that are already in the pipeline behind the exception-
triggering instruction.

4.17.3 Instructions are fetched normally until the exception is detected. When
the exception is detected, all instructions that are in the pipeline aft er
the fi rst instruction must be converted to NOPs. As a result, the second
instruction never completes and does not aff ect pipeline state. In the cycle
that immediately follows the cycle in which the exception is detected, the
processor will fetch the fi rst instruction of the exception handler.

4.17.4 Th is approach requires us to fetch the address of the handler from memory.
We must add the code of the exception to the address of the exception
vector table, read the handler’s address from memory, and jump to that
address. One way of doing this is to handle it like a special instruction that
computer the address in EX, loads the handler’s address in MEM, and sets
the PC in WB.

4.17.5 We need a special instruction that allows us to move a value from the
(exception) Cause register to a general-purpose register. We must fi rst
save the general-purpose register (so we can restore it later), load the
Cause register into it, add the address of the vector table to it, use the
result as an address for a load that gets the address of the right exception
handler from memory, and fi nally jump to that handler.

4.18

4.18.1

 ADD R5,R0,R0
Again: BEQ R5,R6,End
 ADD R10,R5,R1
 LW R11,0(R10)
 LW R10,1(R10)
 SUB R10,R11,R10
 ADD R11,R5,R2
 SW R10,0(R11)
 ADDI R5,R5,2
 BEW R0,R0,Again
End:

S-18 Chapter 4 Solutions

4.18.2

4.18.3 Th e only way to execute 2 instructions fully in parallel is for a load/store
to execute together with another instruction. To achieve this, around each
load/store instruction we will try to put non-load/store instructions that
have no dependences with the load/store.

ADD R5,R0,R0
Again: ADD R10,R5,R1

BEQ R5,R6,End
LW R11,0(R10)
ADD R12,R5,R2
LW R10,1(R10)
ADDI R5,R5,2
SUB R10,R11,R10
SW R10,0(R12)
BEQ R0,R0,Again

End:

Note that we are now computing a�i before we check whether we
should continue the loop. This is OK because we are allowed to
“trash” R10. If we exit the loop one extra instruction is executed, but
if we stay in the loop we allow both of the memory instructions to
execute in parallel with other instructions

 Chapter 4 Solutions S-19

4.18.4

4.18.5

CPI for 1-issue CPI for 2-issue Speedup

1.11 (10 cycles per 9 instructions).
There is 1 stall cycle in each
iteration due to a data hazard
between the second LW and the
next instruction (SUB).

1.06 (19 cycles per 18 instructions). Neither
of the two LW instructions can execute in
parallel with another instruction, and SUB
stalls because it depends on the second LW.
The SW instruction executes in parallel with
ADDI in even-numbered iterations.

1.05

4.18.6

CPI for1-
issue CPI for 2-issue Speedup

1.11 0.83 (15 cycles per 18 instructions). In all iterations, SUB is stalled
because it depends on the second LW. The only instructions that
execute in odd-numbered iterations as a pair are ADDI and BEQ.
In even-numbered iterations, only the two LW instruction cannot
execute as a pair.

1.34

4.19

4.19.1 Th e energy for the two designs is the same: I-Mem is read, two registers
are read, and a register is written. We have:

140 pJ � 2*70 ps � 60 pJ � 340 pJ

S-20 Chapter 4 Solutions

4.19.2 Th e instruction memory is read for all instructions. Every instruction also
results in two register reads (even if only one of those values is actually
used). A load instruction results in a memory read and a register write,
a store instruction results in a memory write, and all other instructions
result in either no register write (e.g., BEQ) or a register write. Because
the sum of memory read and register write energy is larger than memory
write energy, the worst-case instruction is a load instruction. For the
energy spent by a load, we have:

140 pJ � 2*70 pJ � 60 pJ � 140 pJ � 480 pJ

4.19.3 Instruction memory must be read for every instruction. However, we
can avoid reading registers whose values are not going to be used. To do this, we
must add RegRead1 and RegRead2 control inputs to the Registers unit to enable or
disable each register read. We must generate these control signals quickly to avoid
lengthening the clock cycle time. With these new control signals, a LW instruction
results in only one register read (we still must read the register used to generate the
address), so we have:

Energy before change Energy saved by change % Savings

140 pJ � 2*70 pJ � 60 pJ � 140 pJ � 480 pJ 70 pJ 14.6%

4.19.4 Before the change, the Control unit decodes the instruction while register
reads are happening. Aft er the change, the latencies of Control and Register Read
cannot be overlapped. Th is increases the latency of the ID stage and could aff ect
the processor’s clock cycle time if the ID stage becomes the longest-latency stage.
We have:

Clock cycle time before change Clock cycle time after change

250 ps (D-Mem in MEM stage) No change (150 ps � 90 ps � 250 ps)

4.19.5 If memory is read in every cycle, the value is either needed (for a load
instruction), or it does not get past the WB Mux (or a non-load instruction that
writes to a register), or it does not get written to any register (all other instructions,
including stalls). Th is change does not aff ect clock cycle time because the clock
cycle time must already allow enough time for memory to be read in the MEM
stage. It does aff ect energy: a memory read occurs in every cycle instead of only in
cycles when a load instruction is in the MEM stage.

I-Mem
active
energy

I-Mem
latency

Clock cycle
time Total I-Mem energy Idle energy %

140 pJ 200 ps 250 ps 140 pJ � 50 ps*0.1*140
pJ/200 ps � 143.5 pJ

3.5 pJ/143.5 pJ � 2.44%

jonesl001
Pencil

